
IDEA AND

PERSPECT IVE Detecting spatial regimes in ecosystems

Shana M. Sundstrom,1*

Tarsha Eason,2 R. John Nelson,3

David G. Angeler,4

Chris Barichievy,5

Ahjond S. Garmestani,2

Nicholas A.J. Graham,6 Dean

Granholm,7 Lance Gunderson,8

Melinda Knutson,9

Kirsty L. Nash,10

Trisha Spanbauer,11

Craig A. Stow12 and

Craig R. Allen13

Abstract

Research on early warning indicators has generally focused on assessing temporal transitions with
limited application of these methods to detecting spatial regimes. Traditional spatial boundary
detection procedures that result in ecoregion maps are typically based on ecological potential (i.e.
potential vegetation), and often fail to account for ongoing changes due to stressors such as land
use change and climate change and their effects on plant and animal communities. We use Fisher
information, an information theory-based method, on both terrestrial and aquatic animal data
(U.S. Breeding Bird Survey and marine zooplankton) to identify ecological boundaries, and com-
pare our results to traditional early warning indicators, conventional ecoregion maps and multi-
variate analyses such as nMDS and cluster analysis. We successfully detected spatial regimes and
transitions in both terrestrial and aquatic systems using Fisher information. Furthermore, Fisher
information provided explicit spatial information about community change that is absent from
other multivariate approaches. Our results suggest that defining spatial regimes based on animal
communities may better reflect ecological reality than do traditional ecoregion maps, especially in
our current era of rapid and unpredictable ecological change.
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INTRODUCTION

The possibility of multiple regimes for ecosystems is now well
documented, and methods to detect temporal regime shifts
have received a great deal of attention (Scheffer & Carpenter
2003; Dakos et al. 2008; Guttal & Jayaprakash 2008). Less
well developed is the application of these tools to the identifi-
cation of spatial regimes that reflect the boundary between
two types of ecosystems (though see K�efi et al. 2014). Spatial
data have unique challenges in that while it is not necessary
for data points to be equally spaced (Dai et al. 2013; Cline
et al. 2014), sufficient spatial sampling resolution is needed to
distinguish one spatial regime from another. The identification
of spatial regimes is increasingly important due to habitat
fragmentation, which increases the proportion of boundaries
in landscapes (Kent et al. 2006), and anthropogenic climate
change, which is expected to shift ecological boundaries.

Studies have already shown rapid altitudinal shifts in montane
ecological boundaries in response to climate change (Allen &
Breshears 1998; Beckage et al. 2008). Similarly, climate-driven
boundary shifts are being detected in marine systems as both
spatial shifts in primary production and in individual species
ranges, as well as in phenological shifts and changes in com-
munity composition (Beaugrand et al. 2002; Edwards &
Richardson 2004; Grebmeier et al. 2006). Because ecological
boundaries in terrestrial systems typically demarcate the distri-
bution of vegetation and ecosystem type, they provide critical
information about the extent and rate of the biological pro-
cesses shaping the boundary and driving the maintenance of
the regime within the boundary (Yarrow & Salthe 2008). This
has implications for both environmental management and bio-
logical conservation (Kent et al. 2006).
Boundary identification has been an active area of

research in terrestrial ecology and biogeography, and is
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generally both data intensive and statistically challenging,
particularly when it involves vegetation sampling (Kent
et al. 2006). The use of remotely sensed data is less labori-
ous than field work, but the method is poor at distinguish-
ing between physically similar but floristically different
vegetation; hence, it may require labour-intensive ground-
truthing to verify ecological transitions in plant assemblages
(Kent et al. 2006). Boundary detection is further compli-
cated by the multiplicity of scales at which different pro-
cesses and physical patterns are expressed (Fagan et al.
2003; Strayer et al. 2003), and that the relationship between
abiotic variables such as climate, and biotic variables such
as vegetation, is often nonlinear across boundaries (Danz
et al. 2012). Typically, terrestrial ecological boundaries
defined for ecoregion maps such as those used by U.S. fed-
eral agencies are based on potential plant communities,
which in turn reflect differences in bedrock, soil, altitude,
temperature, and moisture (Bailey 1983; Omernik 1987).
Terrestrial plant communities may not respond as rapidly
as animal communities to direct anthropogenic change and
climate change (Pearson 2006; Pearman et al. 2008), there-
fore defining the boundaries between animal communities
may better represent current biotic and abiotic conditions.
Variation in animal population dynamics provides informa-
tion on the stability of ecosystem mechanisms, processes,
and linkages, and may serve as an early warning signal of
shifting regimes (Cline et al. 2014).
Pelagic marine ecological boundaries are typically defined

by primary production characteristics (Longhurst 1998) which
reflect aquatic properties such as currents, temperature, salin-
ity, nutrients, and bathymetry, but are complicated by the
ephemeral nature of features such as oceanographic fronts.
Landforms, such as straights, may create another form of
boundary between biological communities. Advection across
fronts or through physical constrictions between water masses
can serve as a driver of both physical and ecological homo-
geneity, though the degree of connectivity can vary rapidly in
space and time (Wassmann et al. 2015). There is much current
discussion of appropriate variables by which to track marine
ecological change (Rice & Rochet 2005; Samhouri et al. 2009;
Rombouts et al. 2013). A priori, it is difficult to know which
individual taxa or processes represent a spatial regime and
thus ecological boundaries. Because of the central role played
by zooplankton as a prey item and a grazer, zooplankton data
have commonly been used (Hooff & Peterson 2006; Pace et al.
2013), although Scheffer et al. (2003) warn that zooplankton
community composition and abundance may be too chaotic
to be useful for regime shift prediction except at very high
level aggregate states.
Ideally, a monitoring programme should be able to forecast

far-reaching change such as a regime shift. However, too
often monitoring focuses on particular species of interest,
effectively barring community-level or ecosystem-level analy-
ses. We use spatially explicit avian and zooplankton commu-
nity species composition data to test for the identification and
location of spatial regimes using Fisher information, an infor-
mation theory method with no strict data requirements that is
a powerful tool for understanding system-level change within
a location, or over space.

Regime shifts and Fisher information

There is widespread acceptance in the scientific community
that some ecosystems exhibit multiple regimes, and that the
transition between regimes can be abrupt and discontinuous
(though see Hastings & Wysham 2010; Fukami & Nakajima
2011). Statistical indicators of regime shifts that can act as an
early warning signal are thought to represent generic proper-
ties that behave in similar and predictable ways across system
types (Dakos et al. 2011), and are proposed to have the added
advantage that detailed mechanistic knowledge is not neces-
sary for their use. The indicators include critical slowing
down, which can manifest as slower recovery rates from per-
turbation, increased autocorrelation and increased variance
(Scheffer et al. 2009); changing skewness (Guttal & Jayapra-
kash 2008); conditional heteroscedasticity (Seekell et al. 2011),
and the variance index (Brock & Carpenter 2006).
These indicators have transformed our ability to identify

variables that change in response to exogenous or endogenous
drivers and signal an impending regime shift. However, much
remains uncertain. For example, although the various indica-
tors have been tested on model systems and historical data
sets with known temporal regime shifts (Lindegren et al.
2012), their performance is not consistent (Seekell et al. 2011;
Perretti & Munch 2012; Batt et al. 2013; Dakos et al. 2013)
and their ability to predict future regime shifts is unknown
(Boulton et al. 2014). Some methods, such as conditional
heteroscedasticity, require large, high-resolution samples (See-
kell et al. 2011) and their applicability to complex systems
with multivariate data is questionable because most studies
have been conducted using either simulated data or very sim-
ple systems (Scheffer et al. 2009; Drake & Griffen 2010; Dai
et al. 2012; Dakos et al. 2012). When models have incorpo-
rated realistic levels of ecological noise, the indicators tend to
perform poorly (Perretti & Munch 2012). A difficulty in devel-
oping early warning indicators is that the critical variables
driving system transitions are typically unknown. Brock &
Carpenter (2012) cite this lack of knowledge as a ‘fundamen-
tal problem’ in leading indicators research.
Researchers have urged that multiple ecosystem variables

should be evaluated when interpreting indictors for real sys-
tems (Carpenter et al. 2009; Lindegren et al. 2012). For exam-
ple Litzow et al. (2013) found that when analysing rising
variance in catch data from fisheries, trends in individual fish-
eries largely failed to be statistically significant, whereas pool-
ing multiple populations increased their ability to detect a
collapse. The variance index (VI) was developed to capture
dominant variance trends in multivariate systems (Brock &
Carpenter 2006). VI should spike prior to a transition, but
results from this index are sometimes unclear (Eason et al.
2014).
Fisher information may address some of the issues listed

above. Fisher information is an information theory approach
(Fisher 1922) that captures patterns in system dynamics as
evidenced by the trends in variables that characterise the sys-
tem’s condition. The approach collapses the behaviour of
multiple variables into an index that can be used to track
changes in dynamic order, including regimes and regime
shifts. Historical applications of information theory-based
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approaches include assessing ecosystem functioning, stability,
complexity, and diversity (Anand & Orloci 2000; Svirezhev
2000; Fath & Cabezas 2004; Patricio et al. 2004). More
recently, Fisher information has been employed for sustain-
able environmental management at various spatial scales
(Karunanithi et al. 2011; Eason & Garmestani 2012) and to
examine temporal patterns in both terrestrial (Mayer et al.
2007; Eason & Cabezas 2012) and aquatic systems (Mantua
2004; Spanbauer et al. 2014; Eason et al. 2016).
While other methods like time series analysis requires a suf-

ficient resolution of data to separate noise from a genuine sig-
nal of an impending regime shift, the data requirements for
Fisher information are more lenient. A strength of Fisher
information is that it can readily incorporate a wide variety of
data types and variables and has been used to identify regime
changes in various types of systems with data resolutions from
relatively small and moderate (Eason & Cabezas 2012) to
quite large (Spanbauer et al. 2014). Furthermore, there is no
minimum or maximum number of variables needed to com-
pute the index. When assessing a complex system charac-
terised by multiple variables, methods like Spearman rank
order correlation have been used in conjunction with Fisher
information to determine which variables or groups of vari-
ables are critical for shaping the Fisher information signal
(Eason & Cabezas 2012). Accordingly, one of the key limita-
tions of traditional statistical indicators is avoided because
there is no need to make assumptions about which variables
best act as indicators of an impending regime shift, particu-
larly when much is uncertain and our knowledge is limited.

Purpose

Our goal is to identify spatial regimes in avian and zooplank-
ton community data using Fisher information, and compare
the extent to which Fisher-identified regime boundaries are
coincident with our a priori understanding of where these eco-
logical boundaries exist, as per classification systems such as
Bailey’s (1983) and Omernik’s (1987) for terrestrial systems,
and marine domain descriptions found in Carmack et al.
(2010) and Archambault et al. (2010). The terrestrial ecore-
gion maps rely heavily on potential natural vegetation based
on underlying geological and climatic variables, so significant
discrepancies between actual land use, actual vegetative cover
and potential vegetation can exist, and should be reflected in
the composition of the animal community. Boundaries in
marine systems are not as spatially constrained as in terres-
trial systems and the key habitat determinants of species’ dis-
tributions and community structure are not as easily defined.
It is important to note that we are not trying to identify
regime shifts that represent a critical transition (e.g. Scheffer
2009), but rather the geospatial point or region at which one
ecosystem type transitions into another.
Although Fisher information is suited to multivariate data

encompassing a wide range of biotic and abiotic data that char-
acterise any given regime, we used a single taxon data set from
each system (birds and zooplankton). Limiting the data in this
way had the benefit of making this a conservative test of the per-
formance of Fisher information that reflects the data readily
available to others working on similar problems. We compared

the Fisher information results with a range of early warning indi-
cators (critical slowing down, captured by the lag-1 autocorrela-
tion coefficient; variance; kurtosis; skewness; and the variance
index), and multivariate methods commonly employed by com-
munity ecologists (nMDS (Oksanen 2013), and cluster analysis).

METHODS

Terrestrial data

We used USGS Breeding Bird Survey data (BBS) from 30 sur-
vey routes along a c. 1900 km transect. Each BBS route is
41 km long and has 50 stop points located at 800 m intervals;
at each stop point, a 3-min point count of sighted and heard
birds is recorded, and data from each stop point are totalled
for the route (Sauer et al. 2014). The routes begin in the
Rocky Mountains, move due east through the central prairie
region, and then veer north into Minnesota, terminating at
the western border of Lake Superior (Fig. 1a). The species
abundance data are a snapshot of the 2007 bird community at
each route location. The routes are located in 5 Omernik
Level III ecoregions (Omernik 1987), but were selected such
that there were roughly an equal number of routes in four
gross ecosystem types: 8 routes from the Southern Rockies
(montane forest), 7 from the High Plains (grassland), 3 from
the Central Great Plains and 4 from the Western Cornbelt
Plains (total of 7 routes from grassland-agriculture matrix)
and 8 from the Northern Lakes and Forest ecoregion (north-
ern forest-wetland matrix). The unequal number of routes
among ecosystems was due to data availability; not all routes
are covered in all years, as route coverage relies on volunteers.
Although we used the Omernik ecoregions as an underlying
map layer when selecting routes, there are multiple ecoregion
maps used by U.S. land agencies, with sometimes substantial
differences between them. None are ‘right’ per se, but all are
best approximations of potential vegetation based on areas
with similar geology, physiography, vegetation, climate, soils,
land use, wildlife, water quality, and hydrology (United States
Department of the Interior). We downloaded the complete
species abundance list for each route (Sauer et al. 2014) and
used it to create a route-species abundance matrix, where
abundance is the number of individual birds for each species
at each route, with values ranging from 0 to 293.
Sampling biases are an issue with BBS data, resulting pri-

marily from under detection of wary, rare, and aquatic spe-
cies, as well as differences between observers. However, those
biases are present across all routes and should not impact the
very coarse pattern extracted from the absence/abundance
data. Remotely sensed data for land cover type are also avail-
able for a 400 m buffer around each route (Sauer et al. 2014).
The land cover data provide a sense of the heterogeneity of
the habitat type for each ecoregion. We averaged the percent
of each land cover type across all routes for each of the five
Omernik ecoregions.

Marine data

Zooplankton community surveys were conducted in 2008, and
samples analysed under the auspices of the International Polar
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Year programme, Canada’s Three Oceans project (Carmack
et al. 2008). The survey traverses 12 000 km from coastal Bri-
tish Columbia just north of Vancouver Island to the Labrador
Sea on the eastern side of Canada, crossing through 6 oceanic
domains: the Gulf of Alaska, the Bering Sea, the Chukchi
Sea, the Beaufort Sea Shelf, and the Canadian Arctic Archipe-
lago, and terminates in the Davis Strait/Labrador Sea
(Fig. 1b). Although these oceanic domains share some zoo-
plankton species, they are known to be distinct from each
other to varying degrees (Archambault et al. 2010; Pomerleau
et al. 2011, 2014). There were 44 sampling locations irregu-
larly spaced along the transect.
Mixed zooplankton samples were collected from August to

September by vertical net hauls with a 236 micron net (typi-
cally to 100 m or 7 m above the bottom), and were preserved

in 95% ethanol and 10% buffered formalin. The zooplankton
samples were keyed out to the lowest possible taxonomic unit
and enumerated and 4th root transformed, as is standard for
marine zooplankton data. When possible, the developmental
stages of each taxa were counted separately. A site-taxa abun-
dance matrix was created. Sites were ordered from western-
most to eastern-most station.

Statistical methods

Fisher information was developed by Fisher (1922) as a mea-
sure of the amount of information about a particular parame-
ter (or system characteristic) that can be obtained by
observation. The form of Fisher information used in this
work is based on the probability of observing various
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Figure 1 (a) The USGS Breeding Bird Survey route locations in the central and northern United States. The Omernik Level III ecoregion boundaries are

coloured in greyscale, whereas the Bailey Level III ecoregion boundaries are shown using dotted lines. (b) Zooplankton data collection locations.
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conditions (p(s)) of the system (Fath et al. 2003; Mayer et al.
2007).

I ¼
Z

ds

pðsÞ
dpðsÞ
ds

� �2
ð1Þ

This is appropriate for our study because we are interested
in determining patterns of change in the condition (or state: s)
of a system. From this equation, note that Fisher information
is proportional to the change in the probability of observing a
system state (dp(s)) over the change in state ds (i.e. I / dpðsÞ

ds ).
The significance of this proportionality may be examined
using two cases. The first example is a system in which the
overall condition does not change from one observation to
the next. While such a system may fluctuate within a basin of
attraction, it is considered stable because the overall condi-
tions are predictable and the patterns are evident; accordingly,
the probability of observing a particular state of the system is
high and Fisher information tends towards infinity. The exact
opposite is true of a system that is constantly changing. In
this case, the system displays no bias towards a particular
condition and there are no distinct patterns useful for charac-
terising the way the system behaves; hence, there is equal
probability of the system functioning in any state and Fisher
information is zero (Pawlowski & Cabezas 2008).
Karunanithi et al. (2008) adapted eqn 1 to handle empirical

data from real systems. Through a series of derivation steps,
Fisher information (henceforth denoted as FI) is numerically
estimated as:

FI ¼ 4
Xn

s¼1
qs � qsþ1½ �2 ð2Þ

where p(s) is replaced by its amplitude (q2(s) � p(s)) to reduce
calculation errors from very small p(s). Further details on the
derivation and calculation may be found in (Mayer et al.
2007; Karunanithi et al. 2008; Cabezas & Eason 2010).
Fisher information has traditionally been used to explore

temporal patterns; however, the method can be applied to
examine spatial dynamics. The core of the FI approach is to
assess patterns in data based on tracking systematic changes
in line with some ordering principle such that trends are eval-
uated over a series of points (e.g. point a, point b, etc.). This
sequence may be defined temporally or spatially. The key dis-
tinction is that rather than using time as the basis for assess-
ing changes, spatial location is the ordering principle. The
basic algorithm for computing FI is as follows: (1) select vari-
ables (e.g. xi, i = 1: n variables) that characterise the condition
of the system (in this case various animal species) and gather
data (i.e. species abundance) from each sampling location (lj)
across the route: (xiðljÞÞ, j = 1: m sampling locations), such
that the abundance of each species at each site defines one
point (e.g. pt1 l1ð Þ : x1 l1ð Þ; x2 l1ð Þ; x3 l1ð Þ; . . .; xn l1ð Þ½ �; (2) assemble
the data into a m 9 n matrix and divide it into a sequence of
overlapping windows that advances one route location per
iteration; (3) determine the measurement uncertainty for each
variable (UXi) and use this to define a boundary (tolerance)
around each system state. If the measurement uncertainty is
unknown then the variation in a stable portion of data may
be used as a proxy. This boundary (size of states) defines how
much a measurement can vary within a particular state; (4)

Use the size of states to determine which points are similar
(dimensions stay within the boundary defining a minimum
range of variation) and group (bin) similar points together
into discrete states; (5) Compute p(s) by counting the number
of points binned in each state and dividing this value by the
total number of points in the window; (6) compute q(s) and
calculate FI using eqn 2. This process is repeated for each
window. Based on empirical assessments, a hwin ≥ 8 was sug-
gested (Cabezas & Eason 2010), however, it is generally set
based on the amount of data available. Increasing the hwin
tends to decrease the magnitude of the FI result and number
of FI points, but the basic trends remain intact (Cabezas &
Eason 2010).
Different system regimes are controlled by fundamentally

distinct processes and exhibit unique patterns. Tracking FI
affords the ability to assess changes in these patterns. Regimes
are identified as periods over time or across space in which FI
is non-zero and the values are relatively stable (i.e. dFI/
dl � 0). While steadily increasing FI indicates rising dynamic
order, less change and possible movement to more consistent
patterns, declining FI signifies unstable dynamics, loss of resi-
lience and may provide warning of an impending shift (Eason
et al. 2014). Although FI typically declines prior to a regime
shift (Mayer et al. 2007; Eason & Cabezas 2012; Eason et al.
2014), researchers examined model dynamics to study the
behaviour of FI in the neighbourhood of a tipping point and
found that the behaviour of FI depends heavily on the trends
in the variables as the system approaches a shift (Eason et al.
2014; Gonzalez-Mejia et al. 2015). It is therefore possible for
FI to increase as a system transitions from one regime to
another. Such a result is in line with Seekell et al. (2011,
2012), who found both increasing and decreasing trends in
early warning indicators prior to a shift.
Once a shift has been identified, the underlying variables

can be explored to determine (or compare) the condition of
the system in its new state (Eason & Garmestani 2012).
Although higher FI values are generally associated with a
greater degree of dynamic order, the level of dynamic order is
not as important as the ability of the system to remain stable
within a desirable regime. When interpreting FI, a regime is
denoted by a relatively stable FI trend (i.e. dFI/dl � 0) with a
high mean (↑lFI) and low standard deviation in FI (↓rFI) or
low coefficient of variation in FI (↓cvFI ¼ rFI

lFI) (Gonzalez-
Mejia 2011; Eason & Garmestani 2012). Transitions are iden-
tified as periods outside of stable regimes characterised by rel-
atively high rFI and cvFI.
The traditional temporal early warning indicators (vari-

ance, skewness, and kurtosis) were computed using standard
functions. The spatial variants (Moran’s I spatial autocorrela-
tion and spatial variance and skewness) were not used
because the sequential one-dimensional ordering of the sam-
pling stations lent itself to a space-for-time substitution. Since
critical slowing down can be understood as increases in
short-term autocorrelation, the lag-1 autocorrelation coeffi-
cient was used as an estimate (Dakos et al. 2008). The VI
was computed as the maximum eigenvalue of the covariance
matrix from the data set (Brock & Carpenter 2006). Note
that the VI and traditional indicators are expected to spike
or increase prior to a regime shift, whereas FI tends to
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decline (Eason et al. 2014). Fisher information and the tradi-
tional indicators were computed in MATLAB (v. 2014b)
using a five station moving window that advanced one sta-
tion at a time, where a station was either a BBS route or a
plankton sampling site. A window size of five ensured that
there were FI results for each ecoregion for both studies;
using smaller or larger windows resulted in similar trends in
the FI results, similar to other studies (Cabezas & Eason
2010). Multivariate analyses were conducted using metaMDS
and ordicluster from package ‘vegan’ (R Development Core
Team 2013). The distance matrices for the nMDS were cre-
ated using Bray–Curtis, and multiple dimensions were plotted
in a scree diagram to find the lowest dimensionality with an
adequate ordination fit as expressed by a stress value [< 0.2,
(Clarke 1993)]. The mean, standard deviation and the coeffi-
cient of variation (CV) in FI were calculated for each regime
to explore regime stability.

RESULTS

Terrestrial data

Fisher information detected four regimes and two transition
zones which are roughly congruent with a priori expectations
based on ecoregion maps, but diverge in significant ways
(Fig. 2). The total drop in FI between the high point in
regime 1 and the low point in transition 1 is greater than that
between regime 2 and regime 3 (ΔFI of 2.05 and 0.98 respec-
tively), suggesting that the difference in FI between the South-
ern Rocky Mountains and the 3 Plains ecoregions is greater
than the difference among the Plains regions, which is to be
expected. Likewise, the total drop in FI between regime 3 (all

Plains routes) and regime 4 (Northern Lakes and Forest) is
the largest of all (ΔFI of 2.51), indicating that the greatest
variation in bird community structure exists between these
two regimes.
The declining trend in FI from west to east means avian

community structure is losing order, which aligns with the
reality of increasing intensive agricultural land use. FI classi-
fied the community structure in the first High Plains route as
being similar enough to the eastern Southern Rocky Moun-
tains to include it in the first regime. There followed a steady
loss of order, as reflected in the FI value, across the western
High Plains. When FI did stabilise, indicating a new regime,
that regime captured routes from both the eastern High Plains
and western Central Plains ecoregions, indicating a blurring
of the distinction between the two Plains ecoregions in terms
of vegetative cover and avian community structure. Similarly,
the third regime incorporates routes from the eastern Central
Plains and most of the Western Cornbelt Plains ecoregions,
indicating that avian community structure did not significantly
differ between the two Plains ecoregions. This is not an unex-
pected result, given that those two ecoregions are, in reality, a
grassland-agriculture matrix.
The traditional indicators did not provide clear results and

yielded graphs with no interpretable pattern (Fig. 3), however,
the VI provided results that were complementary to FI
(Fig. 2). The VI peaks in several places which are congruent
with regime shifts identified by FI (routes 10, 18 and 21). In
general, the VI provides complementary information that sup-
ports the trend captured by FI, but is significantly more diffi-
cult to interpret when evaluated alone because it is not
possible to ascertain whether a peak marks the beginning or
end of a stable regime or of a transition zone.
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While all three descriptive statistics (mean (lFI), standard
deviation (rFI), and coefficient of variation (cvFI) in FI) indi-
cate relative stability in each of the first three regimes, the
fourth regime, wholly comprised of routes from the Northern
Lakes and Forest region, has a lower mean, higher standard
deviation, and higher coefficient of variation in FI than the
other regions, indicating that there is greater variation in com-
munity structure within this ecoregion (Fig. 4). Furthermore,
the two transition zones have a higher CV than the regimes
(except the 4th regime), indicating zones of high variability as
community structure transitions from one regime to another.
The results of the multivariate analyses suggest that while the

nMDS (stress value of 0.080 for 2 dimensions) and cluster anal-
ysis (not shown on Fig. 5 because results are identical to the
nMDS) identifies distinct communities that align with the a pri-
ori expectations of the Omernick ecoregions, they do not distin-
guish between the High Plains and Central Plains communities.
The nMDS (Fig. 5) shows the dissimilarity in community struc-
ture in terms of the relative position of each route to every other
in ordination space, as well as how those routes align with
ecoregion expectations by drawing polygons that connect the
routes belonging to each Omernik-defined ecoregion. The
routes from the three Plains ecoregions are closer to each other
in ordination space than either the Southern Rockies or North-
ern Lakes and Forest routes, indicating that they are more simi-
lar in community structure. The first route of the Northern
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Lakes and Forest region, indicated by FI as part of a long tran-
sition zone between regimes, is also very proximate in ordina-
tion space to the Cornbelt Plains routes, reflecting their
closeness in geographical space. However, the High Plains and
Central Plains overlap each other, indicating that the nMDS
does not perceive them as dissimilar.

Marine data

Fisher information detected two regimes and two transition
zones, which partially align with the a priori expectations
for the locations of the oceanic domains (Fig. 6). FI is low
and rises steadily throughout two-thirds of the Bering Sea
domain. Since FI never stabilises in this domain, much of
the Bering Sea is classified as a transition zone. The first
regime extends from the northern Bering Sea through the
Chukchi Sea. As the transect enters the Beaufort Sea, FI
climbs steeply without stabilising, indicating increasing
dynamic order in community structure and classifying the
Beaufort Sea as a second transition zone. The second
regime extends from the more geographically closed-in
waters of the Canadian Arctic Archipelago through the
sixth oceanic domain, the Davis Strait/Labrador Sea. The
entire distance from the western edge of the Archipelago to
the Labrador Sea is represented by only 12 stations, so it is
relatively under-represented compared to the western half of
the survey.
Like the terrestrial case study, when the FI trends are com-

pared to the traditional regime shift indicators, only the VI
was able to provide sensible results (Fig. 6). The Variance
Index peaks at the boundary of the Bering Sea, the Chukchi
Sea, and to a lesser extent the Beaufort Sea Shelf. However, it
does not distinguish whether the increased variance denotes
the beginning of a stable regime, or signals a transition zone.
The descriptive statistics support an overall picture of change
in community structure which reflects successive patterns of
an ecoregion with high variability (i.e. high rFI and cvFI)
transitioning into a more stable regime (high lFI, and low
rFI and cvFI) (Fig. 7).

Figure 5 Ordination plot for the BBS avian community data (k = 2, stress

= 0.080). The Breeding Bird Survey (BBS) routes are shown with open

circles, whereas the polygons contain all the routes that fall into the

ecoregions (Omernik 1987). The overlap between the High Plains and the

Central Plains suggests that these two ecoregions do not substantially

differ in avian community structure.
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The multivariate analyses support the FI results, and sug-
gest that the boundaries between the a priori defined ecologi-
cal domains are soft, particularly between the Bering Sea and
Chukchi Sea. When viewed in ordination space, the nMDS
places the stations so they more or less flow from west to east
along the arc, but there is also strong overlap in community
structure at sampling locations near the edges of the domains
[Fig. 8; (stress value of 0.121 for 3 dimensions)]. The cluster

analysis (Fig. 8; pruned to 6 clusters) divides the stations of
the Bering Sea into two clusters, and places two of the Bering
Sea stations in the Chukchi cluster, as well as fails to distin-
guish between the Canadian Arctic and the Davis Strait/Lab-
rador Sea. The overall result is that the zooplankton
communities do not have crisp boundaries which fully align
with the a priori defined domains described in the methods,
but have softer boundaries with considerable overlap in com-
munity structure between domains. Furthermore, FI commu-
nicates a richer story of community structure transitioning
across space than either the nMDS or cluster analysis. How-
ever, unlike the BBS case study, the transition zones were
marked by a rise in FI, as opposed to a drop, which may sug-
gest a possible slowing down of changes in community struc-
ture before the patterns destabilised and the system organised
into a new regime. Further work on the underlying system
dynamics would be instructive.

DISCUSSION

Detecting spatial regimes with Fisher information

Given animal community data, we found that Fisher informa-
tion was able to detect spatial regimes and transitions between
spatial regimes in both terrestrial and aquatic ecosystems,
across regional scales (1900 and 12 000 km respectively).
These studies were an important step towards determining the
utility of FI in detecting spatial regimes in both aquatic and
terrestrial systems, even given data limitations. In contrast,
the traditional indictors we examined, such as variance, skew-
ness, kurtosis, and critical slowing down, were unable to
detect spatial regimes, though this was unsurprising as they
are not suited for multivariate data. The VI helped to confirm
general trends, but it does not reveal details about the regime
dynamics that are useful for assessing the behaviour of the
system, for example whether there is a stable regime between
two peaks, or whether changes in the VI are capturing a tran-
sition. Our results suggest that Fisher information can be a
powerful, easy-to-use tool to assess regime shifts in animal (or
other) community data, providing a biological link between
anthropogenic disturbances such as land use and climate
change, and spatial shifts in ecological communities.

The ecological reality of community regimes

Our analyses demonstrated that the bird community bound-
aries only roughly coincided with the expectations of ecore-
gion maps. There are substantial differences between the
potential vegetation underpinning the ecoregion classifications,
and the actual spatial locations of stable avian communities.
If FI were to fully coincide with the ecoregion maps, then we
would expect to see a stable FI value through the centre of
each ecoregion, with evidence of increasing variability at the
borders, indicated by declining FI. Instead, the High Plains
had high variability in community structure throughout the
core of the ecoregion. And rather than FI identifying three
distinct Plains regimes, as per the ecoregion expectation, it
identified two regimes, each of which straddled routes from
the Central Plains. In other words, the avian community
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Figure 8 Ordination plot for the zooplankton community data (k = 3;

stress = 0.121. The sampling stations are shown with open circles. The

results of a cluster analysis (pruned to 6 clusters) are shown with black

spiders, whereas the oceanic domains a priori identified from the literature

are represented by the coloured polygons. Both the nMDS and the cluster

analysis fail to assign some sampling stations to the ‘correct’ oceanic

domain for all domains except the Gulf of Alaska.
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structure was simplified relative to ecological expectations,
with a blurring of the boundaries between what are consid-
ered distinct ecoregion types by US land agencies. Indeed, the
difference in FI between regime 2 and regime 3 is such that
the argument could be made that the entire Great Plains is
one regime, with a slow but steady loss of order as one moves
from west to east, corresponding with an increasing intensity
of agriculture. The transitions to and from the Plains are both
much steeper than that between the two Plains regimes, as
would be expected.
The land cover summary (Table 1) supports the findings of

FI as it demonstrates that the three prairie landscapes exist on
a gradient of actual vegetative cover. As we move east from
the High Plains to the Cornbelt Plains, the percent grassland
cover drops dramatically from 60 to 5%, and the percent of
row crop land cover rises from 14 to 74% (Table 1). The
most significant changes occur between the High Plains and
the Central Great Plains. These patterns are in contradiction
to ecoregion maps (Omernik 1987; Bailey 2015), which hold
the difference between the Central Great Plains and the Wes-
tern Cornbelt Plains as much more fundamental (a Level I
division) than that between the High Plains and the Central
Great Plains (a Level III division). To the extent that the land
use cover in each 400 m route buffer around the c. 40 km
route reflects on a gross level the land cover of each ecore-
gion, it seems likely that the heterogeneity within the Plains
landscapes due to agriculture and grazing has been reduced.
The length of each transition zone is suggestive of soft,

rather than the hard boundaries depicted on ecoregion maps
(Bailey 1983; Omernik 1987). The long transition from the
Cornbelt Plains to the Northern Lakes and Forest, which cov-
ered more than 400 km, may be impacted by two factors:
First, the final two routes in the Cornbelt Plains occur on the
upward sweep of the transect and so are substantially more
northern than the other Cornbelt Plains routes. Latitude is
known to affect animal communities (Clergeau et al. 2006).
Second, the first route in the Northern Lakes ecoregion tech-
nically falls into a narrow band of the North Central Hard-
wood Forest. This rapid shifting across three ecoregions is
captured by FI as a long transition before the fourth regime
begins. Finally, the higher cvFI and thus relative variability in
FI in the fourth regime, which falls wholly within the North-
ern Lakes and Forest ecoregion, is possibly explained by the
heterogeneity of the land cover, though it is also possible that
further data points would reveal the fourth regime as another
transition as the study ends at a geographic rather than eco-
logical border. However, community structure in this ecore-
gion is likely more variable than in the other regimes because
the landscape itself is more variable, as it is a patchy mosaic
of water features and forest (Table 1).
The zooplankton data tell a similar story to the avian data.

Although there is correspondence between zooplankton com-
munity structure, large-scale oceanic structure, and regime
transitions as detected by FI, some boundaries are less defined
than a priori expectations. Domains thought to contain dis-
tinct communities, such as the Bering Sea or Beaufort Sea
Shelf (Springer et al. 1989; Hopcroft et al. 2010; Pomerleau
et al. 2014), appear to be transition zones between stable com-
munities. The failure of both FI and the nMDS to distinguish

between the Canadian Arctic Archipelago and Davis Strait/
Labrador Sea may be a function of inconsistent sample cover-
age. Further work examining how the frequency of sampling
affects the power and sensitivity of FI is warranted.
The inability of FI to crisply distinguish between the Bering

Sea and the Chukchi Sea is consistent with our understanding
of the region as a mixing zone where Bering Shelf water mixes
with water from the Anadyr current, which enters from the
west, and Alaska coastal water, which enters the Bering Strait
from the east (Coachman et al. 1975). These three water
masses are believed to harbour unique zooplankton communi-
ties (Springer et al. 1989), and as the water masses do not mix
until they pass through the Bering Strait into the Chukchi
Sea, the zooplankton community contains a mixture of com-
munities that differ from the southern Bering Sea and have
high patchiness (Eisner et al. 2014; Pomerleau et al. 2014). As
the transect enters the Beaufort Sea, there is a decline in both
Pacific taxa and zooplankton community patchiness associ-
ated with the mixing of the three Pacific water masses and
Arctic water, corresponding to greater similarity among sam-
ples and increasing dynamic order in FI. The expectation was
that the Chukchi, understood to be a mixing zone of water-
masses, would be identified by FI as a transition zone, and
the Beaufort Sea Shelf would be a stable regime. Instead, the
northern part of the Bering Sea and the Chukchi had a stable
FI value denoting it as a regime, while the Beaufort Sea Shelf
underwent a long and significant increase in dynamic order
that never flattened sufficiently to qualify as a regime. This
means that the variability in zooplankton community struc-
ture as the transect traverses the Beaufort Sea was much
higher than that of the northern Bering/Chukchi Sea, despite

Table 1 Land cover classification for a 400 m buffer around each 41 km

Breeding Bird Survey route

Landcover

type

Southern

rockies

High

plains

Central

plains

Western

cornbelt

Northern

lakes and

forest

Open water 0.01 0.01 0.01 0.04

Low intensity

residential

0.02

Deciduous

forest

0.14 0.02 0.03 0.25

Evergreen

forest

0.47 0.12

Mixed forest 0.01 0.11

Shrubland 0.15

Grassland/

herbaceous

0.18 0.61 0.20 0.05

Pasture/hay 0.02 0.04 0.08 0.12 0.10

Row crops 0.14 0.66 0.74 0.03

Small grains 0.13 0.02 0.01

Fallow 0.07

Woody

wetlands

0.28

Emergent

herb wetland

0.01 0.04

The dominant land cover type for each ecoregion is in bold. Note that

Northern Lakes and Forest is roughly evenly split between Deciduous

Forest and Woody Wetlands, evidence for the hetereogeneity of the

region.

Only showing those categories for which at least one ecoregion has > 1%.
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the latter region consisting of a mixing zone of multiple water
masses. The FI results suggest that studies on dominant zoo-
plankton species within each domain (Nelson et al. 2009;
Walkusz et al. 2010; Pomerleau et al. 2014) may not strictly
correlate to bigger picture studies which assess variability in
community structure over space, or that zooplankton species
compositional data or the way in which they are collected are
not a good proxy for spatial regimes.

What Fisher information captures that multivariate analysis does not

The nMDS analysis largely aligned with the a priori ecoregion
and oceanographic domain expectations, but was not always
able to distinguish between ecoregions (the High Plains and
Central Plains) or domains (Canadian Arctic and Davis
Strait/Labrador Sea), though in the case of the zooplankton
data, that failure may be a function of insufficient sampling
stations in those domains. Perhaps most importantly, the mul-
tivariate analyses are largely visual; ordination methods create
their own space, and thus do not tell us about spatial shifts in
the location of a community. Routes that were geographically
farther away from each other tended to be more dissimilar
than routes that were close together. However, this rather
crude depiction of community structure does not tell us where
the boundaries between communities occur, whether they are
hard or soft, or if the soft boundaries are themselves ecotones
with stable community structure. Furthermore, the approach
does not provide any insight on the spatial extent of the tran-
sitions. The ability to assess whether or not a particular com-
munity is gaining or losing order over time could allow land
use managers to anticipate a potential regime shift within a
location, or document if community locations shift in space
over time. That said, our ability to detect change using FI
may be improved by employing post hoc tests to assess trends
in the index. Researchers have explored approaches such as
cut-offs, Mann–Kendall tests, and Bayesian methods to help
reduce interpretive uncertainty (Heberling & Hopton 2010;
Vance et al. 2015; Gonz�alez-Mej�ıa et al. 2016), but these
methods are still under development.

Idio- or non-idiosyncratic changes in animal community regimes?

To what extent can we expect changes in plant and animal
communities to occur in a fashion detectable by monitoring
and analytical methods like the one presented here? Our con-
tention is that it will depend on whether or not species’
response to anthropogenic change is idiosyncratic within and
across taxa. If species’ responses are fully idiosyncratic, then
the patterns at the community level will become chaotic as a
function of independent species’ responses as anthropogenic
impacts accumulate and intensify. Accordingly, tracking spa-
tial regimes and the location of the transition zones between
them would not be a useful activity for managers or scientists.
There are, however, constraints on individual response such
that pattern identification will remain useful and feasible on
shorter time scales, though the possibility of no-analogue
communities seems highly likely for multi-decadal or longer
time scales (Williams & Jackson 2007). In general, we expect
to see changes in animal abundances in the short term as a

response to climate change and anthropogenic influence, as
opposed to changes in presence/absence. Changes may result
from range shifts, as there is substantial evidence documenting
vagile species recently shifting their ranges to track their cli-
matic niche (Parmesan & Yohe 2003; Parmesan 2006; Tingley
et al. 2009), but the rate of climate change is such that migra-
tion capabilities are unlikely to keep up with the rate of ther-
mal change (Thuiller et al. 2008), and the ability to shift
ranges is further impeded by habitat fragmentation, which has
been shown to reduce range shift (Iverson et al. 2004; Thuiller
et al. 2008). As a result, range contraction due to a lack of
suitable habitat and reduced survivorship within their original
range is also expected (Davis & Shaw 2001; Parmesan 2006).
These issues confound the identification of ecological

boundaries and our ability to track changes in boundaries
over time. Fisher information can assist researchers and man-
agers in tracking changes in the patterns of community struc-
ture associated with habitat types or biogeographical
distribution areas, as well as the temporal dissolution of com-
munity structure as no-analogue communities assemble over
time. A substantial benefit to Fisher information is that it cir-
cumvents many of the difficulties currently present in defining
ecological boundaries, such as problems of nonlinear
responses across ecotones, landscape fragmentation, and land
use change in terrestrial systems, or the ephemeral nature of
some oceanographic boundaries, as well as the vast spatial
scales involved, all of which can be difficult to capture with-
out exhaustive data collection (Strayer et al. 2003; Kent et al.
2006; Danz et al. 2012). Other researchers have discussed the
challenges of tracking boundary region shifts as a way to
monitor climate change, when, for example, little to no native
vegetation remains (< 5% of the original prairie in the United
States due to land conversion), and critical structuring pro-
cesses have been repressed or altered (natural fire regimes sup-
pressed) (Danz et al. 2012). Fisher information allows for the
simultaneous analysis of multiple, disparate variables and pro-
vides a synoptic approach that may allow for detection of
ecological change and boundary shift without pre-supposing
key taxa as bell-weather species of change. However, future
studies wishing to estimate more precisely the location of
boundaries and how they may shift over time may also need
to account for phenological/seasonal detection differences in
the taxon under question.
We also propose that monitoring animal populations is

more likely to reflect currently changing conditions and is
easier than detecting variation in plant communities or
oceanographic properties. Remotely sensed data remain chal-
lenged to identify physically similar but floristically different
species, and ground-truthing large ecological regions is unfea-
sible. Animal species’ responses are likely to occur more
rapidly than plants, as there can be a large mismatch between
vegetation and climate change, with changes in vegetation lag-
ging substantially behind changes in climate (Beckage et al.
2008). Long-lived species such as trees can exhibit ecosystem
responses to land use and climate change at century-scales
because of the spatial and temporal processes structuring for-
ests (Starfield & Chapin 1996), whereas terrestrial animal spe-
cies are more vagile and can act as a leading indicator of
vegetation change, or of a change in climatic variables such as
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temperature. Furthermore, as we demonstrated, there can be
significant differences between ecoregion mapping, which is
based on potential vegetation as a function of geomorphology
and soils, and the location of spatial regimes actually present
after decades of land use changes. All of these issues make it
critical to identify reliable spatially explicit tools for mapping
the effects of climate and land use change on biodiversity
(Mokany & Ferrier 2011), and our research suggests that
Fisher information can be one of those tools.

CONCLUSION

Our analyses confirmed that when using multivariate data,
traditional early warning indicators are very difficult to
interpret, and integrated indicators such as FI and the VI
more consistently detect regime shifts. We found that Fisher
information provided the clearest, most detailed and inter-
pretable signal of spatial regime shifts. Although the Vari-
ance Index did not provide clear signals as a stand-alone
indicator, some congruent trends are found when the results
are presented in conjunction with FI. Fisher information
has the further benefit of being highly flexible in terms of
the choice of variable selection and data input, and is able
to detect a clear signal without the need for difficult-to-
acquire high resolution data.
This research had the further benefit of highlighting the

incongruence between terrestrial ecoregion maps, which are
focused on ecological potential, and the ecological reality of
community regimes given land use and climate change. The
method presented would allow researchers to track both the
shifting spatial locations of communities over time, as well as
the change over time within a location, both of which are crit-
ical as the consequences of anthropogenic change manifests in
community structure and dynamics over time and space.
We appreciate that for both systems analysed, a different taxa

could show spatial regimes in different locations. Reptile or
mammal community regime location may or may not overlap
bird regime location, and the transitions between ecoregions
may be more or less steep given the taxa under consideration.
Neither mammals nor reptiles tend to be as vagile as birds, and
their ability to disperse in response to climate or land use
change is accordingly more limited. Further research evaluating
the spatial regimes of other taxa and the extent to which they
overlap bird and zooplankton species would be useful.
Finally, further studies that looked more deeply into com-

munity structure within a spatial regime could inform man-
agers as to which subgroups of species are most dominant
within each regime, and correlation analysis could identify the
subgroups of species responsible for driving the value of
Fisher information within each regime, both of which would
allow managers to objectively select subgroups of species to
monitor as the primary indicators of ecological stability
within a community.
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